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11.3 Eigenvalues and Eigenvectors of a
Tridiagonal Matrix

Evaluation of the Characteristic Polynomial

Onceour original, real, symmetric matrix has been reduced to tridiagonal form,
one possible way to determineits eigenvaluesis to find the roots of the characteristic
polynomial p,,(\) directly. The characteristic polynomial of atridiagonal matrix can
be evaluated for any trial value of A by an efficient recursion relation (see [1], for
example). The polynomials of lower degree produced during the recurrence form a
Sturmian sequence that can be used to localize the eigenvalues to intervals on the
real axis. A root-finding method such as bisection or Newton's method can then
be employed to refine the intervals. The corresponding eigenvectors can then be
found by inverse iteration (see §11.7).

Procedures based on these ideas can be found in [2,3]. If, however, more
than a small fraction of all the eigenvalues and eigenvectors are required, then the
factorization method next considered is much more efficient.

The QR and QL Algorithms

The basic idea behind the QR algorithm is that any real matrix can be
decomposed in the form

A=Q-R (11.3.1)

where Q is orthogonal and R is upper triangular. For a general matrix, the
decompositionis constructed by applying Householder transformationsto annihilate
successive columns of A below the diagonal (see §2.10).

Now consider the matrix formed by writing the factors in (11.3.1) in the
opposite order:

A'=R.-Q (11.3.2)

Since Q is orthogonal, equation (11.3.1) givesR = QT - A. Thus equation (11.3.2)
becomes

A'=Q".A.Q (11.3.3)
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470 Chapter 11.  Eigensystems

We see that A’ is an orthogonal transformation of A.
You can verify that a Q) R transformation preserves the following properties of
amatrix: symmetry, tridiagonal form, and Hessenberg form (to be defined in §11.5).
There is nothing specia about choosing one of the factors of A to be upper
triangular; one could equally well make it lower triangular. Thisis called the QL
algorithm, since

A=Q-L (11.3.4)

where L is lower triangular. (The standard, but confusing, nomenclature R and L
stands for whether the right or left of the matrix is nonzero.)

Recall that in the Househol der reductionto tridiagonal formin §11.2, we started
in the nth (last) column of the origina matrix. To minimize roundoff, we then
exhorted you to put the biggest elements of the matrix in the lower right-hand
corner, if you can. If we now wish to diagonalize the resulting tridiagonal matrix,
the QL agorithm will have smaller roundoff than the QR agorithm, so we shall
use QL henceforth.

The QL algorithm consists of a sequence of orthogonal transformations:
As - Qs : Ls

- (11.3.5)

As+1:Ls'Qs (: Qs 'AS'QS)
The following (nonobvious!) theorem is the basis of the algorithm for a general
matrix A: (i) If A haseigenvaluesof different absolutevalue |\ ;|, then A, — [lower
triangular form] ass — oo. The eigenvalues appear on the diagonal in increasing
order of absolute magnitude. (ii) If A has an eigenvalue |\ ;| of multiplicity p,
A, — [lower triangular form] as s — oo, except for a diagonal block matrix
of order p, whose eigenvalues — \;. The proof of this theorem is fairly lengthy;
see, for example, [4].

The workload in the QL algorithm is O(n?) per iteration for a general matrix,
which is prohibitive. However, the workload is only O(n) per iteration for a
tridiagonal matrix and O(n?) for a Hessenberg matrix, which makes it highly
efficient on these forms.

Inthis section we are concerned only with the case where A isareal, symmetric,
tridiagonal matrix. All the eigenvalues \; are thus real. According to the theorem,
if any A\; has a multiplicity p, then there must be at least p — 1 zeros on the
sub- and superdiagonal. Thus the matrix can be split into submatrices that can be
diagonalized separately, and the complication of diagonal blocks that can arise in
the general case is irrelevant.

In the proof of the theorem quoted above, one finds that in general a super-
diagonal element converges to zero like

s )\i °
@XN(;) (11.3.6)
J

Although A; < A;, convergence can be slow if A; iscloseto A;. Convergence can
be accelerated by the technique of shifting: If & is any constant, then A — k1 has
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11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix 471

eigenvalues \; — k. If we decompose

A —ks1=0Q, L, (11.3.7)
so that
As+1 = Ls : Qs + ksl
11.3.8
then the convergence is determined by the ratio
/\i - ks
_ 11.39

The idea is to choose the shift k, at each stage to maximize the rate of
convergence. A good choice for the shift initially would be k4 close to A, the
smallest eigenvalue. Then the first row of off-diagonal elements would tend rapidly
to zero. However, \; is not usually known a priori. A very effective strategy in
practice (although there is no proof that it is optimal) is to compute the eigenvalues
of the leading 2 x 2 diagonal submatrix of A. Then set k&, equal to the eigenvalue
closer to aq;.

More generally, suppose you have aready found r — 1 eigenvalues of A. Then
you can deflate the matrix by crossing out the first » — 1 rows and columns, leaving

ro . - 0 1
0
dy T
A= ¢ (11.3.10)
Er dr+1
0
dn—l €n—1

_O U 0 €n—1 dn .

Choose k5 equal to the eigenvalue of the leading 2 x 2 submatrix that iscloser to d...
One can show that the convergence of the algorithm with this strategy is generally
cubic (and at worst quadratic for degenerate eigenvalues). This rapid convergence
is what makes the algorithm so attractive.

Note that with shifting, the eigenvalues no longer necessarily appear on the
diagonal in order of increasing absolute magnitude. The routine eigsrt (§11.1)
can be used if required.

Aswe mentioned earlier, the () . decomposition of a general matrix is effected
by asequence of Householder transformations. For atridiagonal matrix, however, itis
moreefficient to useplanerotationsP,,. OneusesthesequencePi2, P23, ..., Pr_1,
to annihilate the elements a12, ass, ..., an-1,,. By Symmetry, the subdiagonal
elements as;, ase, . . ., an n—1 Will be annihilated too. Thus each Q, is a product
of plane rotations:

Ql =p» . p{)...p), (11.3.11)
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472 Chapter 11.  Eigensystems

where P, annihilates a; ;1. Notethat it isQT in equation (11.3.11), not Q, because
we defined L = QT - A.

QL Algorithm with Implicit Shifts

The algorithm as described so far can be very successful. However, when
the elements of A differ widely in order of magnitude, subtracting a large &
from the diagonal elements can lead to loss of accuracy for the small eigenvalues.
This difficulty is avoided by the QL algorithm with implicit shifts. The implicit
QL agorithm is mathematically equivalent to the original QL agorithm, but the
computation does not require k1 to be actually subtracted from A.

The algorithm is based on the following lemma: If A isasymmetric nonsingular matrix
and B = QT - A - Q, where Q is orthogonal and B is tridiagona with positive off-diagonal
elements, then Q and B are fully determined when the last row of QT is specified. Proof:
Let g7 denote the ith row vector of the matrix Q™. Then g, is the ith column vector of the
matrix Q. The relation B - QT = QT - A can be written

B m ar ar
az B2 72 a3 as
: : = : -A (11.3.12)
Qn—1 ﬂnfl Yn—1 q77;71 q77;71
an  fn A dn
The nth row of this matrix equation is
anGy_1 + Bad, =d, - A (11.3.13)
Since Q is orthogonal,
qz : qm = 57L77L (11314)
Thus if we postmultiply equation (11.3.13) by q,,, we find
Bn=d, -A-q, (11.3.15)
which is known since q,, is known. Then equation (11.3.13) gives
by =21 (11.3.16)
where
Z =L A Bl (11.317)
isknown. Therefore
Ok =75 120, (11.3.18)
or
Qn = |Zn—1| (11.3.19)
and
Op_y = Zn-1/0n (11.3.20)
(where av,, is nonzero by hypothesis). Similarly, one can show by induction that if we know
d,,85-15---,0,—; ad the o’s, @'s, and +'s up to level n — j, one can determine the

quantities at level n — (j + 1).
__ To apply the lemma in practice, suppose one can somehow find a tridiagonal matrix
As+1 such that

Ac1=Q, -A,-Q, (11.3.21)

where 6: is orthogonal and has the same last row as Q7 in the origina QL algorithm.
Then 65 = QS and K5+1 = AS+1.
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11.3 Eigenvalues and Eigenvectors of a Tridiagonal Matrix 473

Now, in the original algorithm, from equation (11.3.11) we see that the last row of QT

is the same as the last row of P{”),. But recall that P, is a plane rotation designed to
annihilate the (n — 1,n) element of A, — k1. A simple calculation using the expression
(11.1.2) shows that it has parameters

dn - ks _ —€n—1

=—n % g= et (11.3.22)
G+ (dn— Fu)? 3+ (dn— Fu)?
The matrix P(*), - A, - P*7 is tridiagonal with 2 extra elements:
X X X
X X X X (11.3.23)
X X X
X X X

We must now reduce this to tridiagonal form with an orthogonal matrix whose last row is

[0,0,...,0,1] so that the last row of Gf will stay equal to P*),. This can be done by
a sequence of Householder or Givens transformations. For the special form of the matrix
(11.3.23), Givens is better. Werotate in the plane (n — 2,n — 1) to annihilate the (n — 2, n)
element. [By symmetry, the (n,n — 2) element will also be zeroed] This leaves us with
tridiagonal form except for extraelements (n — 3,n — 1) and (n — 1,n — 3). We annihilate
these with a rotation in the (n — 3,n — 2) plane, and so on. Thus a sequence of n — 2
Givens rotations is required. The result is that

QU =Qr =P PP, P, (11.324)

where the P's are the Givens rotations and P,,_; is the same plane rotation as in the original
algorithm. Then equation (11.3.21) gives the next iterate of A. Note that the shift ks enters
implicitly through the parameters (11.3.22).

Thefollowing routinetqli (“Tridiagonal QL Implicit”), based algorithmically
on the implementations in [2,3], works extremely well in practice. The number of
iterations for the first few eigenvalues might be 4 or 5, say, but meanwhile the
off-diagonal elements in the lower right-hand corner have been reduced too. The
later eigenvaluesare liberated with very littlework. The average number of iterations
per eigenvalue is typicaly 1.3 — 1.6. The operation count per iteration is O(n),
with a fairly large effective coefficient, say, ~ 20n. The total operation count for
the diagonalization is then ~ 20n x (1.3 — 1.6)n ~ 30n2. If the eigenvectors
are required, the statements indicated by comments are included and there is an
additional, much larger, workload of about 3n 3 operations.

SUBROUTINE tqli(d,e,n,np,z)
INTEGER n,np
REAL d(np),e(np),z(np,np)

C USES pyt hag

QL algorithm with implicit shifts, to determine the eigenvalues and eigenvectors of a real,
symmetric, tridiagonal matrix, or of a real, symmetric matrix previously reduced by tred2
§11.2. dis a vector of length np. On input, its first n elements are the diagonal elements of
the tridiagonal matrix. On output, it returns the eigenvalues. The vector e inputs the sub-
diagonal elements of the tridiagonal matrix, with e (1) arbitrary. On output e is destroyed.
When finding only the eigenvalues, several lines may be omitted, as noted in the comments.
If the eigenvectors of a tridiagonal matrix are desired, the matrix z (n by n matrix stored
in np by np array) is input as the identity matrix. If the eigenvectors of a matrix that has
been reduced by tred2 are required, then z is input as the matrix output by tred2. In
either case, the kth column of z returns the normalized eigenvector corresponding to d (k).

INTEGER i,iter,k,1l,m

REAL b,c,dd,f,g,p,r,s,pythag
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do1u i=2,n
e(i-1)=e(i)
enddo 11
e(n)=0.
do1s 1=1,n
iter=0
do 12 m=1,n-1
dd=abs (d(m))+abs (d(m+1))
if (abs(e(m))+dd.eq.dd) goto 2
enddo 12
m=n
if (m.ne.1l)then

Convenient to renumber the elements of e.

Look for a single small subdiagonal element
to split the matrix.

if (iter.eq.30)pause ’too many iterations in tqli’

iter=iter+1
g=(d(1+1)-d(1))/(2.%e(1))
r=pythag(g,1.)
g=d(m)-d(1)+e(1)/(g+sign(r,g))
s=1.
c=1.
p=0.
do 14 i=m-1,1,-1
f=s*e (i)
b=c*e (i)
r=pythag(f,g)
e(i+l)=r
if(r.eq.0.)then
d(i+1)=d(i+1)-p
e(m)=0.
goto 1
endif
s=f/r
c=g/r
g=d(i+1)-p
r=(d(i)-g)*s+2.*c*b
p=s*r
d(i+1)=g+p
g=c*r-b
Omit lines from here
do 13 k=1,n
f=z(k,i+1)
z(k,i+1)=s*z(k,i)+c*f
z(k,i)=c*z(k,i)-s*f
enddo 13

. to here when finding only eigenvalues.

enddo 14
d(1)=d(1)-p
e(l)=g
e(m)=0.
goto 1
endif

enddo 15

return

END

Form shift.

This is dy — ks.

A plane rotation as in the original QL, fol-
lowed by Givens rotations to restore tridi-
agonal form.

Recover from underflow.

Form eigenvectors.
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11.4 Hermitian Matrices

The complex analog of a real, symmetric matrix is a Hermitian matrix,
satisfying equation (11.0.4). Jacobi transformations can be used to find eigenvalues
and eigenvectors, as also can Householder reduction to tridiagonal form followed by
QL iteration. Complex versions of the previous routines jacobi, tred2, and tqli
are quite analogous to their real counterparts. For working routines, consult [1,2].

An alternative, using the routines in this book, is to convert the Hermitian
problem to areal, symmetric one: If C = A + B is a Hermitian matrix, then the
n x n complex eigenvalue problem

(A+1iB) - (Uu+iv) = A(u+iv) (11.4.2)

is equivalent to the 2n x 2n real problem

A -B u u
[B A].M_AM (1142)
Note that the 2n x 2n matrix in (11.4.2) is symmetric: AT = A and BT = —B

if C is Hermitian.
Corresponding to a given eigenvalue ), the vector

-V
[ y ] (11.4.3)
is also an eigenvector, as you can verify by writing out the two matrix equa-
tions implied by (11.4.2). Thusif A1, \a,..., A, are the eigenvalues of C, then
the 2n eigenvalues of the augmented problem (11.4.2) are A1, A1, Ao, Ao, ...,
An, An; €ach, in other words, is repeated twice. The eigenvectors are pairs of the
formu + v and i(u 4 iv); that is, they are the same up to an inessential phase. Thus
we solvethe augmented problem (11.4.2), and choose one el genval ueand el genvector
from each pair. These givethe eigenvaluesand eigenvectorsof the original matrix C.

Working with the augmented matrix requires a factor of 2 more storage than
the original complex matrix. In principle, a complex algorithm is also a factor of 2
more efficient in computer time than is the solution of the augmented problem. In
practice, most complex implementations do not achieve this factor unless they are
written entirely in real arithmetic. (Good library routines always do this.)
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